
TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 

For a personal retention copy .. call 

Tech. Info. Division, Ext. 6782. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Abstract 

The Maximum Likelihood Method Applied to the 
Problem of Multi-Component Decay 

R. C. Eggers* and L. P. Somerville 
Lawrence Berkeley Laboratory 

University of California, Berkeley, CA 94720 

A method of multi-component decay analysis is presented using the maximum 
likelihood method instead of the least-squares method. The maximum likelihood 
method has been applied to the analysis of fission track data from experiments 
designed to produce elements 104-107, and has resulted in the best possible 
half-life estimates from data having only a few counts. It may also be applied 
to other cases where there are insufficient numbers of counts to make collec­
tion of data into time bins and least-squares analysis a valid procedure. The 
formulas for asymmetric error bars in the multi-component case are developed 
along with example computations. 

Introduction 
Multi-component decay problems are most often analyzed by the least-squares 

method. The least-squares method is derived from the ~aximum hikelihood ~ethod 
(MLM) under the assumption that there are a sufficient number of counts in each 
bin at all of the points where the data and the fitting function are compared. 
When this assumption breaks down, one must return to the MLM to obtain statis­
tically correct results. 

Some authors have published methods related to the MLM for the case of one 
1 2 component. ' 

this method. 3 
Recently, Zlokazov has given a rather complete description of 
He advocates reducing the problem to a single parameter. We 

find, in contrast, that there are many cases in which this cannot be done. 

Thus, a computer code is required which can handle an arbitrary number of com­
ponents in the decay with the flexibility of fixing any of the degrees of free­
dom which may be known~ priori. Zlokazov also defines a new error estimate 
somewhat related to the usual statistical variance which allows him to give 

asymmetric error bars. We will extend this into a formula for the case of many 
degrees of freedom. 

*Present address: Cyclotron Corporation, Berkeley, CA 94710 
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Maximum Likelihood Problem Formulation 

The likelihood function I_ i~ the product of the decay probability expres­
sions for each time t; that a count was detected. It is this function we wish 

to maximize with respect to all free parameters (half-lives and fractional 
number of atoms of each component at time zero). Our expression for the like­
lihood function is 

( 

m -A.t. 
l J 1 . l A .N .e 

ln J= J J 
m i Jt2k .l l 

J=l k:::l tlk 

-A.t ) ' 
A.N.e J dt 
J J 

( 1) 

where N. is the fraction of the total counts in the decay of the jth component, 
J 

and Aj is the decay constant for the jth component. The experiment is assumed 

to have taken place such that it is sensitive to time intervals from t 1k to 
t 2k. (In practice this corresponds to segments of track detectors). Our 
expression differs from that of Zlokazov only in the normalizing denominator, 

which accounts for the fact that we may not observe all the counts associated 
with the decay. This denominator reduces the number of degrees of freedom of 

the likelihood function because if all theN. are multiplied by the same con-
J 

stant, the same likelihood function value results. In order to achieve a sys-

tem without degeneracy, one of the variables is eliminated from the equations 
by the use of the likelihood normalization formula 

f
t 2k -A .t 

t A.N.e J dt = 1. 
lk J J 

( 2) 

The eliminated Nj is called Nj*' The maximization of the likelihood function 
with this constraint is carried out with a multi-dimensional Newton's method. 

This then yields the most likely values for each of the parameters Nj and Aj. 
The detailed formulas, including the first and second partial derivatives with 
respect to all the parameters, are available from the authors on request. 

Once we have obtained the most likely values for the parameters, we want to 

calculate estimates for the errors. The definition of the variance for a 

parameter p. (either anN. or a A. shifted to a most likely value of zero) is 
J J J 
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(3) 

The evaluation of such integrals is quite time consuming and can be avoided by 
assuming that the likelihood function has a Gaussian shape in the region of the 
maximum. Under this assumption, we can generate estimates of the variance for 
all parameters from the second derivative matrix for the logarithm of the like­
lihood function. This can be seen from the following. The Gaussian shape of 
the maximum likelihood function can be expressed as 

(4) 

where the matrix ~- 1 is an arbitrary designation for the second derivative 
matrix which gives the likelihood function the correct shape, and pt is the 
transpose of the column vector p. We intend to show that its inverse~ is 
actually the variance-covariance matrix as defined by 

a :: a. . :: !dp p. p. L ( p) . 
P·P· 1J lJ 

1 J 
(5) 

Now consider the multi-dimensional integral 

The integration is carried out over pi. Integrating by parts, we differentiate 
the P; and integrate the exponential factor with the remainder of the pre-
exponential factor. This gives ; 

I 

+ 1+-·- -1 +) G = fdp exp(-2P'~ p . (7) 

Next, consider a second type of multi-dimensional integral 

(8) 

with i * k. We can integrate this directly over dp;, since pk (with i * k) is 
a constant with respect to integration over P;· We then have 
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IP; = +oo 

H = ff ••• fdpl ••• dpi-ldpi+l"""dpnfk exp(-{Pt(lPJIP; = -oo = 0. (9) 

These two types of integrals are sufficient to prove the following matrix 
equation correct, since each element of the matrix on the right hand side 
corresponds to one of the two types of integrals. 

X 

• -+t -1-+ 
fp p e~P ~ Pdp 

m 1 

1 
--~ ..... 1--"" I, 

1 -+t - -+ 
!e -YzP ~ Pdp 

where I is the identity matrix. 

1 -+t -1-+ 
!p p e-YzP f{, Pdp 

1 m 

(10) 

Thus, these two matrices are inverses of each other as required. In our code 
LIKELY, which is based on the MLM, we generate error bars assuming the likeli­
hood function to be Gaussian-like in the region of the maximum. 

Figure 1 is an application of LIKELY to a six parameter analysis of some 
spontaneous fission data in search of element 104 isotopes. To check the 
assumption that the maximum is Gaussian-like, figure 2 is a plot of the likeli­
hood function in the region of the maximum for six parameters. lhe profile for 
Nj* (which has been eliminated from the equations) was generated based on the 
assumed direction in parameter space for ~j*. 

( 11) 

where 

( )

2 ClN.* 
+! _J_ 

j 8N . 
• _L '* J JrJ 

( 12) 
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The program also calculates a goodness of fit parameter, x2, based on an 
adaptive binning procedure in which the time axis is divided into bins, each 
of which has roughly an equal number of counts. 

Formulation of Asymmetric Error Bar Problem 
For the one-dimensional case, Zlokazov, 3 in his eq. (9), defined a rela-

tionship between the upper and lower ha lf-1 ife limits t 1 and t 1 0 and 
~,u ~,.{.. 

the confidence level f as follows: 

( 13) 

(14) 

We choose f to be 0.9. The resulting confidence limits t 1 0 and t
1 

u are 
~'.{.. ~' 

related to the width of the likelihood distribution and may be asymmetric as 
measured from the point of maximum likelihood. 

If there is more than one free parameter, we have to apply the more general 
formula 

~~----------------------------------- = fp. 
Jd~ L(~) 1 

(15) 

{16) 

We have to perform the pi integration on the projection of the likelihood 
function on the pi axis (expression in brackets, equation 15) instead of on 
the likelihood function itself. Otherwise, we would ignore off-axis likeli­
hood contributions. The integral of the likelihood function along the P; 
axis gives a severely unaerestimated width for the likelihood. The variance 
of crp? does include the off-axis contributions because it is defined as 

1 

/dp p~ L(p) 
- 1 

0 2 = Jdtf LtW) 
P; 

( 17) 
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Adopting the approach of equations (15) and (16), we see that we have to 
solve a problem in m-dimensional numerical integration, where m is the number 
of free parameters in the problem. The reason for the numerical approach is 
that the likelihood function projections will not yield to analytical integra­
tion, since the Gaussian part of the expressions will not. We have therefore 
written a code called BUMP which evaluates formulas (15) and (16) after LIKELY 
locates the maximum likelihood point and passes on the parameters to BUMP so 
BUMP can delimit the region of interest for the integration. Since we are 
dealing with repeated numerical integrations, the process is quite slow. A 
case of three free parameters took approximately 1 hour of computation time on 
a PDP-11/60. Thus, we have to choose examples carefully. 

Figure 3 is an application of LIKELY to some other data from element 104 
experiments with three parameters. Figure 4, which was derived from BUMP, 
shows the projection of the likelihood functions on the axis of each of the 
three free parameters. Note in table 1 that approximate a values calculated 
from LIKELY, along with upper and lower limits calculated from BUMP, agree 
within a few percent. 

Summary and Conclusions 
When working with mica track detectors, where the only distinctions between 

various products are different half-lives, the importance of correct data 
analysis cannot be understated. The x2 value calculated by LIKELY should be 
of great help in deciding if the correct number of components has been chosen. 

LIKELY is slower than least-squares programs by the factor of the number of 
counts in the bins for the least-squares programs. Still, it runs quite fast; 
for the data in figure 3, with -1200 tracks, the program takes less than a 
minute to execute on a PDP-11/60. LIKELY results are 10 to 15 percent differ­
ent from the least-squares programs (in cases like figure 1 and figure 3). On 
balance, we think that the MLM is the most appropriate procedure to treat track 
detector data. 

The BUMP program, however, takes much computer time and, for the data in 
figure 3, shows only slight changes in the error bars, which indicates that it 
is not worthwhile running for every data set. Asymmetric errors may be more 
important as the number of data points decreases, but the time of calculation 
does not decrease significantly with fewer data points; it goes up about an 
order of magnitude for each additional degree of freedom. 
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_Figure Caetions 
Figure 1: 

Maximum likelihood fit to the spontaneous fission data for the 
reaction 95 MeV 18o + 248cm. For the purpose of illustrating the 
maximum likelihood code, the "3.1 ms spontaneous fission activity" 
has been included, although other experiments indicated that it is 
probably due to scattered beam. 

Figure 2: 
Profile of the likelihood function near the maximum for each variable 
(counts and half-life) for the data in figure 1. The components are: 
(1) 992 ms; (2) 3.14 ms; and (3) 53.7 ms. 

Figure 3: 
Maximum likelihood fit to the spontaneous fission decay curve for the 
reaction 81.6 MeV 15N + 

249 Bk. 4 

Figure 4: 
Projections of the likelihood function on the parameter axes for the 
data in figure 3. The projections are seen to be roughly Gaussian. 

7 



Table 1 

Comparison of 11 LIKELY 11 and 11 BUMP 11 Results for the data of figure 3 

LIKELY 

T(l) = 23.29 x 1.27 ms 
!z 

N1 = 1,233 x 61.5 counts 

Background = 718.5 x 29.5 counts 

8 

BUMP 

23. 29 + 1. 32 ms 
- 1.23 

1,233 : ~6:~ counts 

718.5 : ~6:6 counts 
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